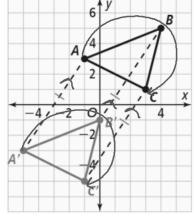
Translations

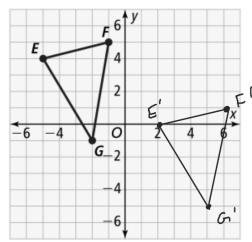
A translation is a transformation in a plane that maps all points of a preimage the same distance and in the same direction.

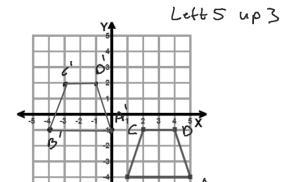

The translation of $\triangle ABC$ by x units along the x-axis and by y units along the y-axis can be written as $T_{\langle x, y \rangle}(\triangle ABC) = \triangle A'B'C'$.

A translation has the following properties:

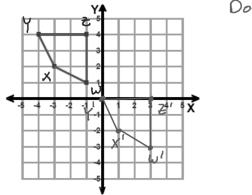
If
$$T_{\langle X, \ Y \rangle}$$
 ($\triangle ABC$) = $\triangle A'B'C'$, then

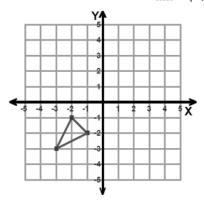
- $\overline{AA'} \parallel \overline{BB'} \parallel \overline{CC'}$.
- $\overline{AA'} \cong \overline{BB'} \cong \overline{CC'}$.
- $\triangle ABC$ and $\triangle A'B'C'$ have the same orientation.

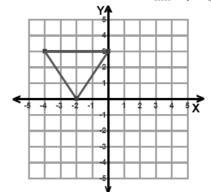

A translation is a rigid motion, so length and angle measure are preserved.

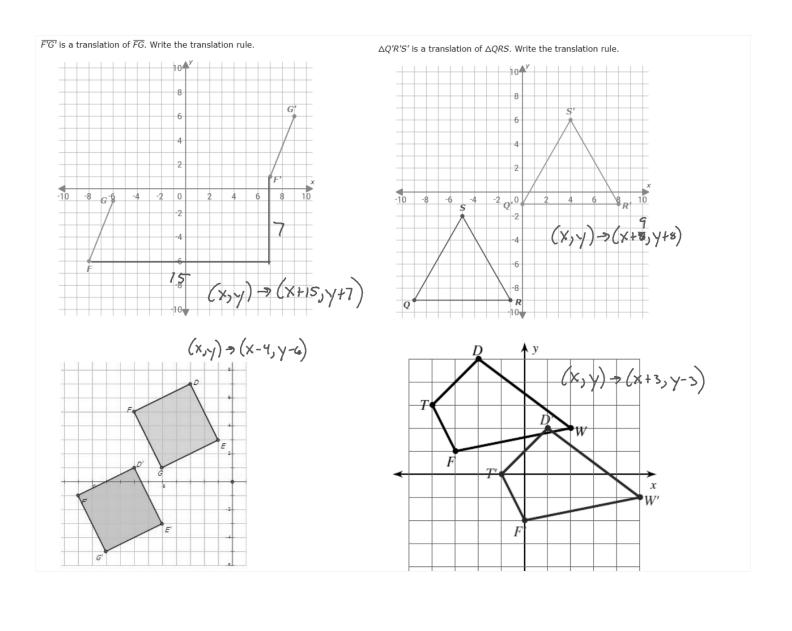

What is the graph of $T_{(7, -4)}$ $(\triangle EFG) = \triangle E'F'G'$?

$$E(-5,4) \rightarrow E'(-5+7, 4-4)$$
(2,0)


$$F(-1,5) \rightarrow F'(-1+7,5-4)$$
(6,1)


What is the graph $\inf T_{\langle -5,3 \rangle}$


What is the graph of $T_{(4,-4)}$ R:Sht 4 Down 4

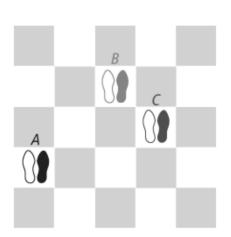


What is the graph $\inf T_{\langle 2,5 \rangle}$

What is the graph $\inf T_{\langle -2,-4 \rangle}$

A **composition of rigid motions** is a transformation with two or more rigid motions in which the second rigid motion is performed on the image of the first rigid motion.

Step 1 Translate △ABC left 2 units and up 5 units.


A''B' C' (Re T(-2, 5)) (\(\triangle ABC)\)
A'BC

Step 2 Reflect $\triangle A'B'C'$ across line ℓ .

This notation uses a small open circle to indicate a composition of rigid motions on $\triangle ABC$.

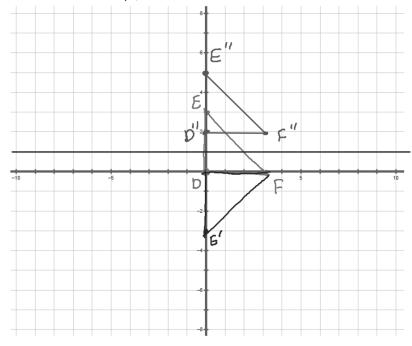
In learning a new dance, Kyle moves from position A to position B and then to position C. What single transformation describes Kyle's move from position A to position C?

SOLUTION

3. What is the composition of the transformations written as one transformation?

a.
$$T_{\langle 3, -2 \rangle} \circ T_{\langle 1, -1 \rangle} \rightarrow T_{\langle 4, -3 \rangle}$$

3. What is the composition of the transformations written as one transformation?

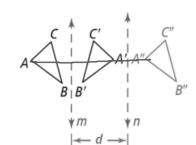

b.
$$T_{\langle -4, 0 \rangle} \circ T_{\langle -2, 5 \rangle} \longrightarrow T_{\langle -\ell_1 + \langle -\ell \rangle, 0 + 6 \rangle}$$

$$T_{\langle -\ell_1 + \langle -\ell \rangle, 5 \rangle}$$

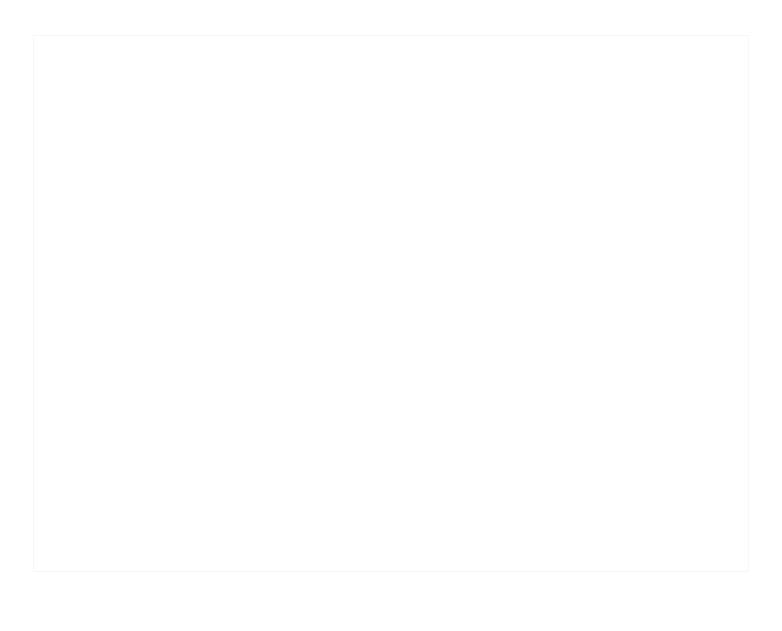
4. Suppose n is the line with equation y = 1. Given $\triangle DEF$ with vertices

 $(R_n \circ \underbrace{R_{x\text{-axis}}})(\triangle DEF)$?

Ry-axis - (x,y) = (x,-y)



A translation is a composition of reflections across two parallel lines.


- Both reflection lines are perpendicular to the line containing a preimage point and its corresponding image point.
- The distance between the preimage and the image is twice the distance between the two reflection lines.

PROOF: SEE EXAMPLE 5.

If...
$$T(ABC) = A''B''C''$$

 $AA'' = BB'' = CC'' = 2d$

Then... $(R_n \circ R_m)(ABC) = A''B''C''$

